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abstract

Accurate prediction of the thermospheric density field has recently been gaining a lot of
attention, due to an outstanding increase in space operations in Low-Earth Orbit, in the con-
text of the NewSpace. In order to model such high-dimensional systems, Reduced-Order
Models (ROMs) have been developed against existing physics-based density models. In
general, the data-driven reconstruction of dynamical systems usually consists of two steps:
compression and prediction. In this paper, we focus on the compression step and assess
state-of-the-art order reduction methodologies such as autoencoders, linear, and nonlin-
ear Principal Component Analysis (PCA). Kernel-based PCA, which is a nonlinear variation
of PCA, outperforms Neural Networks in representing the model in low-dimensional space
in terms of accuracy, computational time, and energy consumption for both the Lorenz
system, a chaotic dynamical system developed in the context of atmospheric modeling,
and the thermospheric density.

Plain Language Summary

In the context of the commercial activities performed in Low-Earth Orbit, a region of space of a few
hundred kilometers of altitude, because the space traffic is increasing, it is important for us to obtain a
model of the density field of the atmosphere, as the motion of the satellites in this orbital regime is
strongly influenced by atmospheric drag, which is a function of the atmospheric density. While such
models, based on first principles, already exist, they are complex and require a lot of computations; at
the same time, more empirical models are less accurate. The trade-off proposed in this work, called
reduced-order modeling, enables us to obtain a compressed representation of the density field, which
can be used to construct predictive models, perform uncertainty quantification, and estimate the
position of spacecraft in the future taking into account our knowledge of the environment and our
availability of observation data. We here focus on non-linear methods, to perform the compression,
using Machine Learning Methods. In particular, the use of Neural Networks is compared with the use of
Support Vector Machine Methods. Interestingly, for the datasets investigated, the latter technique is
not only much more efficient but also more accurate.
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1. Introduction

As a result of new advancements in satellite design and low-cost launches, we are witnessing an
outstanding increase in the number of satellites in Low Earth Orbit (LEO). The dynamics of satellites in
such orbital regimes are influenced by certain sources of perturbations among which thermospheric
drag has the largest impact on orbital motion uncertainty. To determine the drag force, accurate
knowledge of the density field is required; however, because of the complex physical interactions
of space weather on the density field in extreme events (Berger et al. 2020), it is needed to perform
uncertainty quantification and real-time calibration. Previous works highlighted for instance the
importance of nonlinearity in the field as a response to solar storms (Licata et al. 2021).

Due to the lack of accuracy in empirical density models and computational inefficiency of physics-based
models of density (Gondelach and Linares 2020), recent works have proposed Reduced-Order Modeling
(ROM) techniques as a trade-off between the existing models. The ROMs are constructed usually by
a compression step in which the system is represented by a lower number of states, compared to
the observed one, and a prediction step in which the model describing the time evolution of the
reduced-order states is reconstructed.

Previous works attempted at compressing the thermospheric density field using Linear Methods (Licata
et al. 2022) and Neural Networks (Manzi and Vasile 2021; Nateghi, Manzi, and Vasile 2021), which have
been successfully used to compress and predict dynamical systems in general (Champion et al. 2019,
Luchtenburg_2021). Depending on the dataset, autoencoders have been shown to perform better than
linear methods. However, for the compression of the thermospheric density field, Principal Component
Analysis (PCA) performs better than autoencoders. In (Licata and Metha 2020), the importance of hyper-
optimization is highlighted; in (Turner et al. 2020) different datasets lead to different comparisons
between Neural Networks and Linear Methods. Machine Learning can be powerful in dealing with
dynamical systems (Karniadakis et al. 2021), particularly because of the functional analysis framework
in which it is embedded: however, while autoencoders “might seem preferable to a detailed nonlinear
analysis, the resulting neural network models require extensive tuning, lack physical interpretability,
generally perform poorly outside their training range and tend to be unnecessarily complex" (Cenedese
et al. 2022).

Inspired by the successful use of Kernel Methods in the context of Koopman Operator Theory (Williams,
Rowley, and Kevrekidis 2014), (Klus, Nüske, and Hamzi 2020) and finance (LeFloch et al. 2021), this
work aims at using alternative generalizations of Principal Component Analysis: Kernel PCA (Schölkopf,
Smola, and Müller 1997). KPCA is a nonlinear version of PCA that is developed for compression and
denoising applications (Bakır, Weston, and Schölkopf 2004). KPCA has been proven as a powerful
method for data reconstruction in general cases (Mika et al. 1998) and particularly Earth observation
data (Bueso, Piles, and Camps-Valls 2020). In this work, we aim at analysing KPCA along with the other
nonlinear dimensionality reduction methods.

ML Methods for Nonlinear ROM of the Thermospheric Density Field 3



Page 4

This article is organized as follows. In Section 2, we elaborate on the different methodologies that are
followed by Section 3, containing the numerical results for a toy case as well as the thermospheric
density model by making a comparison on the accuracy, computation time and energy consumption
among the methodologies. Conclusions and the ideas for the future work are reported in Section 4.

2. Methodology - Dimensionality Reduction

The first step before applying any data-driven technique to derive any dynamical model for a high-
dimensional system is to reduce the order of the problem with the least loss of information to improve
the computation time and performance of the regression, generally speaking. In this section, the
state-of-the-art linear and nonlinear algorithms for dimensionality reduction are discussed.

Linear Reduced-Order Modeling: PCA

A commonly used and straightforward linear method for order reduction is PCA which aims at repre-
senting variable x ∈ Rd by a set of linear basis functions of dimension k, being k ≪ d. In this regard,
the zero-mean variable x can be approximated by the first r dominant orthogonal spatial modes:

x(s, t) ≈
r∑

i=1
ci(t)Φi(s) (1)

in which s is the spatial grid, Φi are the spatial modes, and ci are the corresponding time variant
coefficients. The spatial modes Φi can be computed by diagonalizing the centered covariance matrix of
a data, defined C = XXT or alternatively by using Singular Value Decomposition (SVD) of the matrix
X of size d × ns containing ns samples of x. By performing SVD, the matrix X can be factorized by two
unit matrices U ∈ Rd×d and V ∈ Rns×ns and a diagonal matrix Σ ∈ Rd×ns in the form:

X = UΣV T (2)

The reduced-order states as a result are computed:

z = UT
r x (3)

where Ur is defined as the first r columns of U matrix. The output of this analysis is the n orthogonal
directions with biggest variance containing as much information as possible.
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Nonlinear Reduced-Order Modeling with Kernel PCA

Although PCA is a strong method for dimensionality reduction, in a large number of cases, a
d-dimensional variable x, can not be expressed in a linear manifold without significant loss of informa-
tion. Among the various proposed nonlinear dimensionality reduction algorithms, Kernel-based PCA
is widely used for its simplicity and ease of implementation.

In case of having no lower-dimensional linear subspace on which x can lie, KPCA proposes to bring the
system to an even higher dimension D through an arbitrary transformation Φ : Rd → RD. Although it
may sound counter-intuitive in a dimensionality reduction problem, the transformation is designed
such that the modified variable x̃ can be described by linear low-dimensional manifold by performing
the PCA.

As one guesses, producing such a very large-dimensional space and performing any transformation
in this space is computationally costly. The kernel trick is a solution for this problem. The essence of
this trick is that one does not need to explicitly apply the transformation Φ and represent the data
with generating the higher-dimensional space with the new transformed coordinates, and instead, it is
sufficient to perform a pairwise similarity comparisons between the original data and compute κ(., .)
such that:

κ(xi, xj) = ⟨Φ(xi), Φ(xj)⟩ (4)

It should be noted that there is a difficulty in this method which is the selection of the kernel function or
Φ transformation. This transformation can differ by case depending on how the data shape. There are
a number of typical kernels such as Gaussian, radial basis functions (RBF) and polynomials. According
to the data of interest in this work, RBF, a generalized case of Gaussian, has been selected:

κ(xi, xj) = exp(−β||xi − xj ||2) (5)

Once the kernel is defined, the Gram matrix K ∈ Rns×ns of the kernel space is formed:

Ki,j = κ(xi, xj) for i, j = 1, 2, ..., ns. (6)

Note that kernel must be selected such that K matrix is positive definite. Now that K is known, its SVD
can be computed:

K = V ΣV T (7)

The reduced-order states can be computed the same as introduced in PCA:

z = V T
r k(x) (8)

where Vr is obtained by the first r columns of V and k(x) is the i-th column of K matrix corresponding

ML Methods for Nonlinear ROM of the Thermospheric Density Field 5



Page 6

to the i-th sample reduced state.

Note that for improving the efficiency of PCA, the Gram matrix K needs to be centered:

Kcentered = (I − 1ns)K(I − 1ns) (9)

where I is the identity matrix and 1ns is a ns × ns matrix whose elements are all equal to 1/ns. More
details on centering the kernel and the proof can be found in (García-González et al. 2020).

KPCA is a general case of PCA, that if we introduce a linear kernel by which Φ(x) = x, KPCA corresponds
to standard PCA in a higher dimension space. Thus, the only added computational complexity to the
problem is just the calculation of inner products that is hardly changed if the selected kernel is easy to
compute(Schölkopf, Smola, and Müller 1998).

As a result of KPCA being a generalization of PCA, according to what introduced and proved in (Schölkopf
and Smola 2001), the first r principal components computed via KPCA are still uncorrelated and carry
the highest variance among any set of orthogonal directions.

KPCA backwardmapping problem

In the standard PCA, the k-dimensional linear manifold spanning by the first r modes is defined in the
original space Rd and therefore, the backward mapping from the reduced-order states into the original
one is simply x̃ = Urz. This is not the case for KPCA and it is well-known as pre-image problem which
tries to find a corresponding x ∈ Rd, given a point Ψ in the kernel space with kernel function Φ such
that Ψ = Φ(x).

The first attempt is to find an exact pre-image. If an exact pre-image exists and if the chosen kernel is
invertible, one can compute the pre-image analytically. However, this is not practical as it does not
usually exist an input data in the original space corresponding to the any point in the kernel space.

In case the exact pre-image does not exist, the pre-image x̃ is approximated:

x̃ = arg min
x

||Ψ − Φ(x)|| (10)

To solve the minimization problem, some proposes iterative schemes to find the pre-images (Kwok and
Tsang 2004). That can be an option but the scheme highly depends on the particular type of kernels
and does not necessarily provide the global minimum.

To find the optimal solution, kernelized ridge regression is proposed (Bakır, Weston, and Schölkopf
2004). For each x ∈ Rd and X ∈ Rns×d, there exist vector ω = [ω1, ω2, ..., ωns ] ∈ Rns such that:

x = ωX (11)
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To find the vector ω, the kernel ridge regression can be written as:

Jω = arg min
ω

||Ψ − Φ(ωX)||2 + λ||ω||2 (12)

where the second term is a L2 norm regularizer. The optimal solution of the dual problem of such
minimization problem is given by (Murphy 2012):

ω = XT (XXT + λIns)−1Ψ (13)

Nonlinear Reduced-Order Modeling with Autoencoders

New advancements in the area of machine learning made them appealing to various applications,
namely dimensionality reduction. Autoencoders are Neural Networks (NN) consisted of an encoder
that takes an input vector xN×1 and outputs a vector zr×1 and a decoder that takes the encoder’s
output and provides a vector x̃N×1. These NNs are trained such that their input is copied into their
output. In the application of dimensionality reduction, according to the Figure, if r < N , the inner
layer has less neurons compared to the input and output and makes the network summarizes the
information in a lower dimension vector while keeping the reconstruction error as low as possible.

𝜑(𝑥) 𝜓(𝑥)

𝑥

𝑧

𝑥

To perform the training of the autoencoders throughout the work, the mean squared error is used as a
loss function according to the input vector x and x̃ and functions Φ(x) and Ψ(z) for the encoder and
decoder, respectively:

L2(x, Ψ(Φ(x))) = ||x − x̃||2 (14)

The activation functions in such network can be nonlinear that makes it a powerful tool for the learning
and reconstruction of a nonlinear manifold. Assuming only one layer for the encoder and decoder with
linear activation functions, the network resembles a standard PCA as shown in the figure.
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3. Results

To have a comparison on the performance of the algorithms for dimensionality reduction, they are
used for the reduced-order modeling of the Lorenz system as a toy example of chaotic dynamical
system and the thermospheric density.

Lorenz System

We start assessing the described methodologies to a dynamical system whose differential equations
are explicitly known. We do so in order to have an accurate measure on the reconstruction error, as
the dynamics is known and can be compared with the result of the compression associated to each
algorithm.

In this regard, we follow (Champion et al. 2019) in building an high dimensional system upon the
chaotic Lorenz system. The nonlinear dynamics of the Lorenz system is described by the following set
of equations:

ż1 = σ(z2 − z1)

ż2 = z1(ρ − z3) − z2

ż3 = z1z2 − βz3

(15)

Based on this system, the high-dimensional system can be constructed by a mapping from R3 to R128,
using six fixed spatial modes associated to Legendre polynomials.

The relatively high-dimensional system now can be used as the input for the order-reduction algorithms
whose performance are accurately assessed given the true three-dimensional Lorenz system.

To fully show the potential of the algorithms, we consider nonlinear mapping, using cubic terms:

x(t) = u1z1(t) + u2z2(t) + u3z3(t) + u4z1(t)3 + u5z2(t)3 + u6z3(t)3 (16)

where the components of un are the 128 evaluations of the nth Legendre polynomial. The dataset
we are using for Lorenz system in this work is made of 256000 snapshots as training set and 2500
snapshots as validation set which is used in PCA and KPCA.

Considering the input/output size of 128 and the latent space dimension of 3, we make use of fully
connected layers to build the network. In order to deal with the nonlinear structure of the system, we
make use of five layers with hyperbolic tangent activation function. The network is summarized in the
Table below.
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Input
Encoder

Dense layer, size 128,
hyperbolic tangent activation function

Dense layer, size 64,
hyperbolic tangent activation function

Dense layer, size 3,
hyperbolic tangent activation function

Decoder
Dense layer, size 64,

hyperbolic tangent activation function
Dense layer, size 128,

hyperbolic tangent activation function

The next table shows the summary of the reconstruction error for the aforementioned dimensionality
reduction algorithms for Lorenz system.

Method Error
PCA 3.4715

KPCA 0.1556
Autoencoder 2.2779

As one expects, due to nonlinear intrinsic of the system, nonlinear methods should perform better than
the standard PCA. The results, moreover, are showing that when dealing with such high dimensional
system, KPCA outperforms autoencoder. It should be noted that the parameter γ in the definition of
RBF kernel in Equation 5 is optimized using Nelder-Mead method for an ensemble of equally spaced
set of initial guesses.

Thermospheric Density

Now that the applicability of KPCA is demonstrated for a toy case, we can apply the proposed method-
ologies for thermospheric density field. To initiate the algorithms for thermospheric density, we took
the density data from the database of High Accuracy Satellite Drag Model (Tobiska et al. 2021), because
of its decent temporal and spatial resolution. The Table below, shows the characteristics of the data.
By preprocessing the data, we end up having a dataset consist of 2920 snapshots in a space with 1920
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features. Note that 2000 snapshots are used as training set and the rest is assumed for the validation
set which is also used in PCA and KPCA algorithms.

Domain Resolution

Local solar time [hr] [0, 24[ 3

Latitude [deg] [-90, 90] 10

Longitude [deg] [0, 360[ 15

Altitude [km] [500, 600[ 25

The tuning of autoencoder here has been optimized for this specific dataset. We made use of KerasTuner
(O’Malley et al. 2019), a Python package for hyperparameter optimization. We fixed the activation
function and optimized the architecture of the network according to the following parameters:

Domain
Number of layers 1, 2, 3

Number of neurons per layer 24, 25, ..., 210

Network bottleneck size 5, 6, ..., 10

It is worth noting that the number of neurons in layers are selected such that the structure of the
network is preserved according to the Figure.

After tuning the autoencoder, the network is now made of 3 fully connected layers for the encoder and
decoder and latent space size of 10 shown in 1.

ML Methods for Nonlinear ROM of the Thermospheric Density Field 10
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Table 1: Structure of the fully connected autoencoder making use of HASDM data for the modeling of
thermospheric density field.

Input
Encoder

Dense layer, size 1920,
ReLu activation function

Dense layer, size 1024,
ReLu activation function

Dense layer, size 512,
ReLu activation function

Dense layer, size 256,
ReLu activation function

Dense layer, size 10,
ReLu activation function

Decoder
Dense layer, size 256,

ReLu activation function
Dense layer, size 512,

ReLu activation function
Dense layer, size 1024,

ReLu activation function
Dense layer, size 1920,

ReLu activation function

In order to have a more accurate reconstruction in both linear and nonlinear ROM methods, the data
have been normalized and mean-subtracted, making use of the maximum density value in the space
and time of interest.

Table 2 shows the relative error in reconstruction of the thermospheric density field.
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Table 2: Reconstruction error for thermospheric density field

Method L2 norm of the error L∞ norm of the error
PCA 1.2293 0.0074

KPCA 0.2862 0.0080
Autoencoder 21.2226 0.1915

The results show that KPCA could provide one with a set of reduced-order states with the highest
accuracy in reconstruction of density field compared to the other methods. To signify the superiority of
the method, the L∞ of the error is also calculated to be sure that the error is bounded throughout the
entire validation dataset. It is shown that PCA and KPCA are two orders of magnitude more accurate
than Autoencoder, though the L∞ norm of the error of PCA is comparable to KPCA for this specific
dataset.

Here again, the parameter γ in the definition of kernel is optimized. To give an impression on the
behaviour of the system with respect to any variation in parameter γ, the reconstruction error is
calculated for a wide range of γ and the result is shown in Figure 1.

Figure 1:L2 norm reconstruction error for different kernel parameter γ

The Figure suggests that by decreasing (increasing) the kernel parameter, we are widening (narrowing)
the kernel distribution function which results in underfitting (overfitting) the data.

To investigate the sensitivity of the algorithm to the size of the latent space, we apply the three algo-
rithms for different size of reduced order states (The network in the case of Autoencoder has been
trained for different size of latent space accordingly). Figure 2 shows the trend of reconstruction error
for different order reduction methodologies with respect to the number of states in the latent space.
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Figure 2:L2 norm reconstruction error for different latent space size

To have a better understanding on the result of the reconstruction, the input density field and the
corresponding reconstruction errors for each method are depicted in Figure 3 on the 1th of January
2013 at midnight for the different algorithms.

Figure 3: (a) Reference density field, (b) PCA reconstruction error, (c) KPCA reconstruction field, (d)
Autoencoder reconstruction field
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The result for the reconstruction of density has been shown for a specific year of 2013. To show the
robustness of the method and support the drawn result, the three methods have been tested for the
density data for the altitude between 500 − 600Km for the years between 2011 − 2019. Figure 4 shows
that regardless of datasets, KPCA outperforms the other methods consistently.

Figure 4:L2 norm reconstruction error for different datasets

Computation Time and Energy Consumption

Beside benchmarking all the proposed approached for reduced order modeling problems with respect
to computational time, inspired by the work by PowerAPI, focused on greener computing, we here also
discuss their energy consumption. The general goal is address the environmental issues associated
also with the growing carbon footprint of neural network training (Patterson et al. 2021).

The computational cost and the energy consumption of the three routines discussed in this work (Table
3) have been computed using the pyJoules library. Note that the amount of time for the optimization
of the parameter γ in KPCA is also included in the execution time.

Table 3: Costs associated to different methodologies

Method Execution duration [s] Power Consumption [uJ]
PCA 0.3923 17.9077 · 106

KPCA 24.6358 1.3325 · 109

Autoencoder 1298.7059 39.8931 · 109

This table, combined with the results given in the previous section, show that, at least for the two
problems considered in this work, the choice of the model is not a consequence of a trade-off between
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accuracy and computational cost.

4. Conclusions and Recommendations

It was shown that, at least for some datasets, Kernel methods are a competitive choice, compared to
Neural Networks, particularly in contexts in which efficiency is crucial. Moreover, the modes associated
to KPCA have a hierarchy: the accuracy of the compression is proportional to the number of modes
used. The same is not guaranteed for autoencoders.

In the context of previous works on atmospheric density estimation in particular, the efficiency of
kernel methods is also an important feature, as the propagation requires the decoding of the reduced
order state.

This work can still be improved: here, the kernel function has been selected via trial and error and the
literature, not from a rigorous optimization; the same can be said about the choice of autoencoders
over recent variants of deep and convolutional autoencoders.

Data Availability Statement

The HASDM density database now resides in a SQL database with open community access for scientific
studies and can be accessed at this link: https://spacewx.com/hasdm/ and at the Zenodo link
https://zenodo.org/record/7046622.
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